
COMPUTER SYSTEMS LABORATORY

STANFORD UNIVERSITY • STANFORD, CA 94305-4055

Application of Formal Specification to
Software Maintenance

Neel Madhav
Sriram Sankar

Technical Report No. CSL-TR-90-436
(PAVG Report No. 48)

August, 1990

BBJffiü^Jfl

ÄEpxoved toi pups :eie«*S

H

19960729 093
ÜTIC qöALKY INSPECTED 3

This research was supported by the Defense Advanced Research Projects Agency under
contract N00039-84-C-0211.

DISCLAIMEl NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

Application of Formal Specification to Software
Maintenance

Neel Madhav Sriram Sankar

Program Analysis and Verification Group

Computer Systems Laboratory

Departments of Computer Science and Electrical Engineering

Stanford University
Stanford, CA 94305-4055

Technical Report CSL-TR-90-436

(Also Program Analysis and Verification Group Report No. 48)

August, 1990

Abstract

This paper describes the use of formal specifications and associated tools in addressing
various aspects of software maintenance — corrective, perfective, and adaptive. It also
addresses the refinement of the software development process to build programs that are
easily maintainable. The task of software maintenance in our case includes the task of
maintaining the specification as well as maintaining the program.

We focus on the use of Anna, a specification language for formally specifying Ada pro-
grams, to aid us in maintaining Ada programs. These techniques are applicable to most
other specification language and programming language environments. The tools of interest
are: (1) the Anna Specification Analyzer which allows us to analyze the specification for
correctness with respect to our informal understanding of program behavior; and (2) the
Anna Consistency Checking System which monitors the Ada program at runtime based on
the Anna specification.

Keywords—software maintenance, software specification, specification analysis, runtime
consistency checking, perfective maintenance, corrective maintenance, adaptive maintenance,
Anna.

L

Computer Systems Laboratory
Stanford University
Copyright © 1990

1 Introduction
Specification languages present an opportunity to de-
velop new techniques in all phases of software main-
tenance. These languages provide a capability for ex-
pressing, at an abstract level, what a program does.
Formal specifications are expressed in a machine pro-
cessable form — they can be parsed, checked for static
semantic errors, and in many cases, compiled into run-
time tests. Typical examples of specification languages
developed during the past few years are Anna [7],
Larch [4], RAISE [11] and Z [19].

The processes of software development and mainte-
nance iterate over requirements, design, coding, and
testing [2,12,13,14]. Most systems have informal re-
quirements, and ad-hoc design, coding, and testing.
The specification language, tools and strategies pre-
sented in this paper make the processes of software
development and maintenance less ad-hoc. The main
point of this paper is that effective and powerful tech-
niques can be developed for software maintenance
based on formal specifications.

The software maintenance techniques discussed in
this paper use relaxed formal methods. Relaxed formal
methods use formal specifications in a manner which
does not insist upon producing provably correct pro-
grams. Our strategies for application of formal speci-
fication to software maintenance involve informal rea-
soning and the support of debugging and analysis tools
which use specifications.

There are two aspects to designing new software de-
velopment and maintenance techniques:

1. developing a new capability.
We have designed the language Anna for specify-
ing Ada [1] programs.

2. designing methods and tools for applying that ca-
pability.
A methodology for formal specification and im-
plementation of Ada packages is presented in [9].
This allows a user, given a package specification
in Ada, to follow a few simple steps to obtain an
Anna formal specification and an implementation
of the package.

We have developed a suite of tools for analyzing
specifications prior to program development (the
Anna Specification Analyzer) [10] and for checking
the runtime behavior of programs (once they have
been developed) for consistency with specifications
(the Anna Consistency Checking System) [15,18].

The Anna Specification Analyzer can be used to
develop adequate formal specifications from an in-
formal understanding of the program functional-
ity. This is done by starting with a specification

and using the Specification Analyzer to perform
symbolic analysis on the specification. The results
of this symbolic analysis are then compared to our
informal understanding of the program function-
ality.

The Anna Consistency Checking System moni-
tors the Ada program at runtime based on the
Anna specification. This is done by checking the
proposed specification against the behavior of the
software. Inconsistencies are reported through a
specialized Anna debugger. A methodology for us-
ing this tool to debug formally specified programs
is presented in [6].

Our techniques are applicable to all three kinds of
software maintenance:

1. perfective maintenance.
Perfective maintenance involves enhancing (or up-
grading) an already existing piece of software. Ex-
cept for the fact that the original software does
not handle the proposed enhancements, it has no
other known faults. Enhancement may involve ex-
tension or modification of specification or code.
Typically perfective maintenance will first involve
enhancements to the specification. This can be
done with the aid of the Specification Analyzer.
Once, we have an enhanced set of specifications,
we need to enhance the program code based on
the new specification. The Consistency Checking
System can aid us in achieving this.

2. corrective maintenance.
Corrective maintenance addresses processing, per-
formance, and implementation failures. Correc-
tive maintenance can involve correction of errors
either in the specification or in the program.

A fault in the specification is detected in the fol-
lowing ways: (1) The program behaves as antici-
pated, but violates a specification — in this case,
the violated specification is incorrect; or (2) The
program does not behave as anticipated, but does
not violate any specification — in this case, the
program is certainly incorrect, and either the spec-
ification is also incorrect or is incomplete (does not
specify against this behavior).

A fault in the program is detected automatically
by the Consistency Checking System. A method-
ology called two-dimensional pinpointing [6] has
been developed to proceed from the initial fault
detection to actually pinpointing the error and
correcting it.

3. adaptive maintenance.
Adaptive maintenance involves modifying soft-

ware to overcome changes in the processing (both
hardware and software) environment of the pro-
gram. Ada is considered to be quite portable,
however, there are many assumptions that Ada
programmers make of the underlying software and
hardware environments. These assumptions range
from quite general (e.g., the Ada compiler being
used is correct), to very specific (e.g., the prede-
fined integer type is represented using 32 bits). In
general, we write formal specifications that reflect
these assumptions we make, and the Consistency
Checking System will notify us automatically of
any violations of these assumptions. A real-life
example of the application of our system was the
detection of an Ada compiler bug when porting
software from one machine to another [16].

Section 2 is an overview of Anna. Section 3 describes
the Specification Analyzer while Section 4 describes the
Anna Consistency Checking System. Sections 5, 6 and
7 deal with application of specifications to perfective,
corrective and adaptive maintenance respectively. Sec-
tion 8 discusses some real-life experiences with formal
specifications. Section 9 concludes the paper.

2 An Overview of Anna

Anna (ANNotated Ada) is a language extension of
Ada [1] to include facilities for formally specifying the
intended behavior of Ada programs. In this section a
brief outline of a few kinds of annotations is given. A
complete definition of Anna is given in [8].

Anna is based on first-order logic and its syntax is a
straightforward extension of Ada syntax. Anna con-
structs appear as formal comments within the Ada
source text (within the Ada comment framework).
Anna defines two kinds of formal comments, which are
introduced by special comment indicators in order to
distinguish them from informal comments. These for-
mal comments are virtual Ada text, each line of which
begins with the indicator --:, and annotations, each
line of which begins with the indicator --|.

2.1 Virtual Ada Text

Virtual Ada text is Ada text which appears as formal
comments, but otherwise obeys all the Ada language
rules. Virtual text may refer to actual text, but is not
allowed to affect the computation of the actual pro-
gram. The purpose of virtual Ada text is to define
concepts1 used in annotations that are not explicitly
implemented as part of the program. Virtual Ada text

1 Functions used in annotations are called concepts.

may also be used to compute values that are not com-
puted by the actual program, but that are useful in
defining the behavior of the program.

Example of virtual text:

package QUEUE_MANAGER is

type QUEUE is private;

- - : function IS_MEMBER(E : ELEMENT; Q : QUEUE)

 : return BOOLEAN;

end QUEUE_MANAGER;

In the above example, IS_MEMBER is a virtual func-
tion. It is used in annotations of actual subprograms
of QUEUE_MANAGER.

2.2 Annotations

Annotations are constraints on the underlying Ada
program. They provide a capability to express at an
abstract level what a program does. Anna provides
different kinds of annotations, each associated with a
particular Ada construct.

Type Annotations: A type or subtype annotation
is a constraint on an Ada type. Type annotations are
located immediately after the definition of the type
they constrain, and are bound to the type definition
by the keyword where.

Example of a type annotation:

type QUEUE is record

STORE :QUEUE_ARRAY(I. .MAX);

IN_PTR, OUTJPTR: INTEGER range 1..MAX;

SIZE .'INTEGER range 0. .MAX;

end record;

--| where Q: QUEUE =>

--| (Q.IN_PTR-Q.OUT_PTR-Q.SIZE)
--| mod MAX = 0;

The above type annotation constrains all values of
the type QUEUE so that their components, IN_PTR,
OUT_PTR and SIZE satisfy the equation in the anno-
tation.

There is another form of type annotation — the mod-
ified type annotation. They constrain the type at the
beginning and end of each package operation. The
above type annotation is rewritten as a modified type

annotation below:

--| where in out Q: QUEUE =>

--| (Q.IN_PTR — Q.OUTJPTR — Q.SIZE)

mod MAX = 0;

Object Annotations: An object annotation is a
BOOLEAN expression constrains the values of the vari-
ables occurring in the expression throughout the scope
of the annotation.

Example of an object annotation:

procedure INSERT(E : ELEMENT; Q : in out QUEUE) is

I:INTEGER := Q.OUT_PTR;

if Q.IN_PTR <= Q.OUTJPTR then

Q. OUT_PTR <= I <= MAX or

1 <= I <= Q.IN_PTR

else

OUT_PTR <= I <= IN_PTR

end if;

begin

end INSERT;

In this example, the variable I is constrained to certain
ranges depending on the value of Q.

Subprogram Annotations: Subprogram annota-
tions are used to describe the behavior of subprograms.
A subprogram annotation may specify an input condi-
tion, an output condition, or an exceptional condition.
Subprogram annotations of functions may specify the
value returned by a function.

Examples of subprogram annotations:

function IS_FULL(Q : QUEUE) return BOOLEAN;

— | <<SPEC_IS_FULL>>

— | where

— I return LENGTH(Q) = MAX;

procedure INSERT(E : ELEMENT; Q :in out QUEUE);

 | <<SPEC_INSERT>>

— | where
 j out (LENGTH(Q) = LENGTH(in Q) + l),

— j out (IS_MEMBER(E, Q));

The first of the above examples is that of a result an-
notation. It specifies that the value returned by the
function IS_FULL is the boolean value LENGTH(Q) =
MAX. The annotations on the procedure INSERT are
out annotations. Out annotations of INSERT must be

satisfied whenever a call to INSERT terminates nor-
mally — i.e., terminates without propagating an ex-
ception. The modifier in on Q specifies that we are
referring to the value of Q on entry to INSERT. There-
fore, whenever a call to INSERT terminates normally,
the length of the resulting Q must be one more than
the length of the value of Q on entry. Also, on termi-
nation, E must be a member of Q.

The above two examples have an extra feature —
annotation names. SPEC_IS_FULL and SPECJNSERT
are annotation names in these examples. They are use-
ful in referring to the annotations from the tools.

Statement Annotations: There are two different
kinds of statement annotations — simple statement an-
notations and compound statement annotations.

Simple statement annotations (or assertions) are
constraints on a single statement.

Example of a simple statement annotation:

Q.SIZE := Q.SIZE + 1;
 1 Q.SIZE = in Q.SIZE + i;

This annotation says that after the execution of the
assignment statement, the new value of Q. SIZE will
be 1 more than its previous value.

Compound statement annotations are constraints on
compound statements. They constrain all observable
states in the compound statement

Example of a compound statement annotation:

— | with
 j Q.OUT_PTR = in Q.OUT_PTR;

begin

Q . STORE(Q . IN_PTR) := E;

Q.IN_PTR := Q.IN_PTR mod MAX+i;

Q.SIZE := Q.SIZE + 1;

end;

The annotation above constrains the block statement
above (which consists of three assignment statements)
to execute in such a way that Q. OUT_PTR remains
the same throughout its execution.

Exception Annotations: Exception annotations
(or propagation annotations) specify the exceptional
behavior of subprograms. There are two different kinds
of exception annotations — strong propagation anno-
tations and weak propagation annotations.

A strong propagation annotation specifies conditions
under which exceptions should be propagated. The
conditions are with respect to the initial state of the

subprogram. If the conditions are satisfied, then the
subprogram must terminate by propagating the speci-
fied exception.

Example of a strong propagation annotation:

procedure INSERT(E : ELEMENT; Q :in out QUEUE);

— | where

 1 IS_FULL(Q) => raise FULL;

This annotations specifies that if IS_FULL(Q) is true
on entry to INSERT, then INSERT must terminate by
propagating the exception FULL.

A weak propagation annotation specifies what hap-
pens when an exception is propagated. It specifies con-
ditions that must be satisfied by the subprogram if a
call terminates by propagating one of the specified ex-
ceptions.

Example of a weak propagation annotation:

procedure INSERT(E : ELEMENT; Q : in out QUEUE);

— I where

 1 raise FULL => Q = in Q;

This annotation specifies that if the procedure INSERT
terminates by propagating the exception FULL, then
INSERT does not change the value of Q.

Note that out annotations do not specify abnormal ter-
mination.

Axiomatic Annotations: Axiomatic annotations
(or package axioms) are constraints on operations of
a package. They must occur in the package visible
part. They begin with the keyword axiom followed by
a sequence of BOOLEAN expressions which are usually
quantified with respect to types defined in the package.
The complete Anna program shown below includes an
example of an axiomatic annotation.

2.3 A Complete Anna Program

We now present an Ada package formally specified us-
ing Anna. This package will be used extensively in ex-
amples in the later sections. The package implements
a queue with the typical operations like create, insert
and remove. Most of the Anna examples above are
from this package.

The Ada package body, including the Ada private
part, contains an implementation, the details of which
are hidden from users. This hidden part also contains
local annotations specifying how the implementation
works. The hidden annotations refer to the hidden
implementation details.

Some requirements are specified both as subprogram
annotations and axiomatic annotations. The reason for
this duplication is (1) to illustrate how the same re-
quirement can be specified in more than one way; and
(2) some of our later examples use the subprogram an-
notation version, while others use the axiomatic anno-
tation version.

The package is shown below. Only relevant portions
of the package body are included to save space.

generic

type ELEMENT is private;

MAX : POSITIVE;

package QUEUE_MANAGER is

type QUEUE is private;

EMPTY, FULL : exception;

 The following are concepts used in specifications.

 : function IS_MEMBER(E : ELEMENT; Q : QUEUE)

 : return BOOLEAN;

function LENGTH(Q : QUEUE) return INTEGER;

function IS_EMPTY(Q : QUEUE) return BOOLEAN;

--| <<SPEC_IS_EMPTY>> where

--| return LENGTH(Q) = 0;

function IS_FULL(Q : QUEUE) return BOOLEAN;

--| <<SPEC_IS_FULL>> where

--j return LENGTH(Q) = MAX;

function TOP(Q: QUEUE) return ELEMENT;

--| <<SPEC_TOP>> where

--j IS_EMPTY(Q) => raise EMPTY;

 The following are operations specified by concepts.

function CREATE return QUEUE;

 1 <<SPEC_CREATE>> where

--| return Q : QUEUE => LENGTH(Q) = 0;

procedure INSERT(E : ELEMENT; Q :in out QUEUE);

--| <<SPEC_INSERT>> where

 1 IS_FULL(Q) => raise FULL,

 1 raise FULL => Q = in Q,

--j out(LENGTH(Q) = LENGTH(in Q) + l),

 1 out(lS_MEMBER(E,Q));

procedure REMOVE(E:out ELEMENT;

Q:in out QUEUE);

--| <<SPEC_REMOVE>> where

--j IS_EMPTY(Q) => raise EMPTY,

--| raise EMPTY => Q = in Q,

--| out(LENGTH(Q) = LENGTH(in Q) - l),

--j out(E = TOP(in Q));

-— Axiomatic annotations follow. In Anna, the attribute

-- 'OUT is a record of all the output values produced by

-— the subprogram.

axiom for all EO, El: ELEMENT; QO : QUEUE =>

REMOVE'OUT(EO,INSERT'OUT(EI,QO) . Q) . Q =

INSERT'OUT(EI,REMOVE'OUT(EO,QO) . Q) . Q,

LENGTH(INSERT'OUT(EO, QO) . Q) =

LENGTH(QO) + I,

LENGTH(REMOVE'OUT(EO, QO) . Q) =

LENGTH(QO) - 1,

TOP(INSERTOUT(EO,QO).Q) = TOP(QO),

IS_MEMBER(EO,INSERT'OUT(EO,QO).Q),

IS_MEMBER(TOP(Q),Q);

private

type QUEUE_ARRAY is

array(lNTEGER range <>) of ELEMENT;

type QUEUE is record

STORE : QUEUE_ARRAY(I . MAX);

IN_PTR, OUT_PTR: INTEGER range 1..MAX;

SIZE : INTEGER range 0 . . MAX;

end record;

--| <<QUEUE_INVARIANT>> where

--| in out Q: QUEUE =>

--j (Q.IN_PTR — Q.OUT_PTR — Q.SIZE)

--| mod MAX = o;

end QUEUE_MANAGER;

package body QUEUE_MANAGER is

--: function IS_MEMBER(E :ELEMENT; Q : QUEUE)

--: return BOOLEAN is . . . end IS_MEMBER;

function LENGTH(Q : QUEUE) return INTEGER is

. . . end LENGTH;

function TOP(Q: QUEUE) return ELEMENT is

. . . end TOP;

function IS_EMPTY(Q : QUEUE) return BOOLEAN

is . . . end IS_EMPTY;

function IS_FULL(Q : QUEUE) return BOOLEAN is

. . . end IS_FULL;

function CREATE return QUEUE is

. . . end CREATE;

 The complete implementation of INSERT is included

 below since it is used in a subsequent example.

procedure INSERT(E: ELEMENT;

Q : in out QUEUE) is

—-| <<BODY_INSERT>>

— | where

 | out(Q.STORE(in Q . IN_PTR) = E);

begin

if IS_FULL(Q) then

raise FULL;

end if;

Q.STORE(Q.IN_PTR) := E;

Q.IN_PTR := Q.IN_PTR mod MAX + i;

Q.SIZE := Q.SIZE + 1;
end INSERT;

procedure REMOVE(E:out ELEMENT;

Q:in out QUEUE) is

. .. end REMOVE;

end QUEUE_MANAGER;

3 The Specification Analyzer

The Specification Analyzer [10] simulates the visible
behavior of a package by symbolic execution of Anna
specifications. The Specification Analyzer may be used
in two ways — to play mind games with a specifica-
tion to get a preview of the behavior of the resulting
package, and to debug the specification itself.

Symbolic execution differs from actual program ex-
ecution in that there is no implementation of the pro-
gram. Logical deduction is used to deduce the state of
a package and values returned by its subprograms.

The Specification Analyzer is based on a theorem-
prover. A model of the package state is built as a set
of logical expressions concerning the relationships be-
tween various functions defined in the package. The
user asks questions of this state, such as querying the
value of an expression or a function call. The theorem-
prover then attempts to deduce answers to queries
based on the current state of the package.

The user may declare variables to create an environ-
ment for the package being analyzed. Queries made
to the Specification Analyzer can be formulated using
these variables. The computation state is made up of
environment variables and the state of the package be-
ing analyzed.

A user can interact with the Specification Analyzer
in the following ways:

• load a package specification,

reset the package state to its initial state,

• define a variable (of a specified type),

• execute a procedure (this updates the state),

• find the value of some expression, involving any
environment variables and subprograms from the
package begin analyzed (this may cause a state
update if the function has a side-effect),

• test whether a boolean condition (made up of en-
vironment variables and subprograms in the pack-
age) is true of the current state,

• test the consistency of the state of the package
being analyzed, or

• explicitly change the state of the package by as-
serting that a boolean expression is true of the new
state.

Figure 1 illustrates the interaction a user may have
with the Specification Analyzer.

User

Manipulate Ina
slate with
operations on
the package

Query the state
with Anna
expressions and
gel answers

Computation State
(Environment Variables and Package State)

Figure 1: Interaction with the Specification Analyzer.

3.1 A Sample Session

To query the effect of executing the subprogram
INSERT on an empty queue with an element E as an
argument, the user would take the following steps:

1. Load package QUEUE.MANAGER with
ELEMENT = INTEGER and MAX = 10 to get
queues of integers of maximum length 10.

2. Declare the variable E : INTEGER.

3. Assign to E some value.

4. Declare the variable Q : QUEUE.

5. Assert the condition IS_EMPTY(Q) = TRUE.

6. Execute the subprogram INSERT(E,Q). This
changes the state of the queue package being main-
tained by the Specification Analyzer.

7. The new state can now be inspected. For exam-
ple, the user may query what the length of Q is in
the new state by querying the value of the expres-
sion LENGTH(Q). The Specification Analyzer will
print out 1 in this case.

The Specification Analyzer thus allows a user to get
a preview of the behavior of the resulting package. The
formal specification of the package is treated as a pro-
totype implementation of the package.

We now illustrate the detection of an error in the
specifications. Assume that the following specification
in package QUEUE_MANAGER:

--| LENGTH(INSERT'OUT(EO,QO).Q) =
— j LENGTH(QO) + 1

was incorrectly written as:

--| LENGTH(INSERT'OUT(EO,QO).Q) =
--j LENGTH(QO)-I

The user expects the length to increase as elements get
inserted in the queue. However, according to the spec-
ification, the length decreases. A simple query which
asks the Specification Analyzer for the value of:

LENGTH(INSERT'OUT(E, CREATE) Q)

would reveal the error in the specification. The user
expects the value 1 and the Specification Analyzer re-
turns the value -1. The Specification Analyzer allows
the formulation of complicated tests which may reveal
more complicated bugs in a specification.

The Specification Analyzer thus allows a user to de-
bug a specification, without any implementation. Any
discrepancy between the user's informal requirements
and the formal specification will show up when using
the Specification Analyzer. It is however, up to the
user to design proper test cases to test the specifica-
tion.

4 The Anna Consistency
Checking System

The Anna Consistency Checking System is a set of
programs that convert Anna annotations into runtime
checking code. This checking code is inserted into the
underlying Ada program. When the resulting Ada pro-
gram is executed, the checking code ensures that any
inconsistency in the program with respect to the an-
notations is detected and reported. The resulting Ada
program is linked to a special Anna debugger.

To improve the performance of the Anna Consis-
tency Checking System, there is an option to distribute
the checking to different processors [17].

When a transformed Anna program is executed, the
Anna debugger takes control and provides a top-level
interface between the user and the program being
tested. The debugger provides the following capabili-
ties:

• Diagnostics.
Provides diagnostic messages when the program
becomes inconsistent with an annotation. In this
case, the annotation violated and the location of
violation is displayed to the programmer.

• Manipulation of annotations.
Annotations can be suppressed or unsuppressed,
and their effect when they are violated can be
changed. For example, annotations can be com-
pletely suppressed, i.e., the program will behave
as if the annotation were not present.

The programmer interacts with the debugger using
menus, choosing displayed options with an input de-
vice such as a mouse. The menus display the various
options the programmer has in interacting with the
debugger. In addition to these menus, there is a win-
dow that displays the program execution. When an
annotation is violated, two more windows are opened.
One of these windows shows the annotation violated
while the other shows the local program text around
the statement where it was violated. This is illustrated
in Figure 2. This Figure illustrates the scenario of the
sample session that follows.

The purpose of this session is to demonstrate the
use of the Consistency Checking System in pinpointing
and correcting errors. A more comprehensive example
is given in [6].

Test: Prior to running this test, we introduce an er-
ror in the implementation of the INSERT procedure.
We delete the line:

Q.IN_PTR := Q.INJPTR mod MAX + i;

We then create a mainline for our queue package and
transform our program using the Consistency Checking
System. We now attempt to perform an INSERT oper-
ation on this transformed program after using CREATE
to create a new queue.

In this case, our test-data is the sequence of two calls
to the queue package: first CREATE and then INSERT.
Our tools do not aid us in the selection of test-data.
However, a lot of research on test-data generation has
been performed (see [3,5,20]) which can be used to help
in the selection of comprehensive test-data.

Result: The Anna Consistency Checking System de-
tects a violation as shown in Figure 2.

Explanation: This means that after an element was
inserted, the invariant condition among Q.IN_PTR,
Q.OUT_PTR, and Q.SIZE was violated. There are
two possibilities: (1) The queue passed to INSERT was
faulty — i.e., CREATE did not perform as expected;
and (2) INSERT did not perform as expected.

juat.

Violation of annotation at
the private part of QUEUEJWANAGER

-I «Q'JEUE_INVARIANT»
-I where In out Q:QOEUE ~>
-I (O.tN m - O.OUT MR ; O.SIZE) mod MAX - 0;

PROGRAM I/O

DRIVER» INSERTU,Q0);
ANNA ERROR Is detei

Violation occurred at
BODY itrt QUEUE? SMA*ttGM:INS£RTi

Q.STORE(Q.INPTR) ;-
Q.SIZE :- O.SIZE + 1;

end INSERT;

Figure 2: Error Reporting By The Anna Debugger.

4.1 A Sample Session

This session starts with the detection of a fault by the
Consistency Checking System. We then proceed me-
thodically to pinpoint the error and correct it. This
session consists of performing a test, observing the re-
sult, an explanation on how to interpret the result and
the actual action taken to further pinpoint this error.

Action and Justification: We use our judgement
and guess that INSERT did not perform as expected.
We decide to repair the body of INSERT using a
goal-oriented approach. The body of INSERT must
achieve the following four goals as a result of updat-
ing Q . INJPTR, Q. OUT_PTR, and Q. SIZE:

1. out(Q.STORE(in Q . IN_PTR) = E)

2. out(Q.SIZE = in Q.SIZE + l)
3. out(Q.IN_PTR = in Q. IN_PTR mod MAX + l)
4. <<QUEUE_INVARIANT>>

Since the fourth goal was violated, the body did not
achieve it. A method of fixing the body has to be
found so that it achieves the fourth goal. Looking at
the body, it is obvious that the body achieves the first
and second goals, but not the third one. It can be
informally concluded that if an assignment statement
is added to satisfy the third goal, then the fourth goal

is also met. Hence, the following assignment statement
is added to the body of INSERT:

Q.IN_PTR := Q.IN_PTR mod MAX + l;

5 Perfective Maintenance

Perfective maintenance involves enhancing functional-
ity, performance (space or time) or maintainability of
a program.

There are two ways a program and its specification
may need to be changed as part of the perfective main-
tenance process:

1. extension. There may be a need to just add to the
specification or the program.

2. modification.TheTe may be a need to change the
specification or the program.

Perfective maintenance which enhances the perfor-
mance of a program requires changing the design and
code, but not the specification of the program. En-
hancing maintainability of a program involves adding
specifications to an unspecified or partially specified
program. In both of these cases specifications do not
substantially add to the process of change itself. How-
ever, the task of testing specifications or programs is
facilitated after the change has been made.

We now consider perfective maintenance which in-
volves changing the functionality of a program. The
motivating idea is that extensions are relatively easier
to handle than modifications. We present strategies
using which, given an updated specification, a user
may determine whether the implementation needs to
be modified or just extended.

The general problem of detecting this for any speci-
fications is intractable. We informally show that if the
changes to the specifications are of a certain form, one
just needs to extend the implementation.

If the specification of each of the old functions re-
mains the same (the old functions are not redefined),
one just needs to extend the implementation. Sec-
tion 5.1 presents an example of this.

If the specifications of any of the old functions are
extended then one may need to modify parts of the im-
plementation or just extend the implementation. Sec-
tion 5.2 is an example of the case where even though
specifications of some functions are extended, the im-
plementation need just be extended.

If the specifications of old functions are modified,
one needs to (typically) modify the implementation.
Section 5.3 is an example of this.

5.1 Extending a Queue

We add a function LAST_ELEMENT to queues. In-
formally this function would return the element just
added to the queue. Formally the specification of the
function using axioms may be:

function LAST_ELEMENT(Q : QUEUE)

return ELEMENT;

<<SPEC_LAST_ELEMENT>> where

IS_EMPTY(Q) => raise EMPTY;

LAST_ELEMENT(INSERT'OUT(QO,EO) . Q)

EO;

The axiom says that the element returned is the
one just inserted; the exception propagation annota-
tion says that calling the function on an empty queue
will result in an exception.

This change need not result in re-coding. All the
user needs to do is to implement LAST_ELEMENT by
returning the element at IN_PTR in the array used to
implement queues.

This change thus was just an extension of both
the specification and implementation of queues. The
implementation was an extension of the old im-
plementation due to the fact that the addition of
LAST_ELEMENT did not change the specification (and
thus behavior) of any other subprogram.

5.2 Modifying Queue Specification

We now change queues to double-ended queues.
Double-ended queues have a function LAST_ELEMENT
as described above and a function REMOVE_LAST
which, informally, removes the last element in-
serted into the queue. Formally the specification of
REMOVE_LAST would be:

procedure REMOVE_LAST(Q :in out QUEUE);

<<SPEC_LAST_ELEMENT>> where

IS_EMPTY(Q) => raise EMPTY;

IS_MEMBER(E, REM0VE_LAST'0UT(

INSERT'OUT(QO.EO) .Q))

= IS_MEMBER(E,QO),

TOP(REMOVE_LAST'OUT(

INSERT'OUT(QO.EO) Q))

= TOP(QO),

REMOVE(REMOVE_LAST'OUT(

INSERT'OUT(QO.EO) .Q))

--| = REMOVE(QO),

— I LENGTH(REMOVE_LAST'OUT(Q))

— I = LENGTH(Q)- I;

In other words, REMOVE_LAST has the opposite ef-
fect of INSERT. In this example, the specification of
functions TOP, IS_MEMBER, REMOVE and LENGTH
has been extended. All these functions must now
be applicable to queues to which REMOVE_LAST has
been applied. However, the implementation of queues
just needs to be extended; the implementation just
needs to decrement IN_PTR. This is because no new
queues are created by application of REMOVEJLAST
to queues. Any queue which is constructed by appli-
cation of REMOVE_LAST can also be constructed by
using just CREATE and INSERT.

5.3 Modifying Queues Again

We now change the functionality of the function
REMOVE to remove elements from the back of the
queue instead of the front. The function REMOVE thus
behaves exactly like the function REMOVE_LAST. It
is quite obvious that the specification and the imple-
mentation of REMOVE need to be modified.

6 Corrective Maintenance

Corrective maintenance involves taking care of process-
ing, performance or implementation failures. This can
involve either correction of errors in the specification
or in the program.

Errors detected in the specification. A fault in
the specification is detected in the following ways:
(1) The program behaves as anticipated, but violates
a specification — in this case, the violated specifica-
tion is incorrect; or (2) The program does not behave
as anticipated, but does not violate any specification
either — in this case, the program is certainly incor-
rect, and either the specification is also incorrect or is
incomplete (does not specify against this behavior).

In such a situation, we correct the specification first.
We modify the specification based on the error we ob-
serve. We now apply the Specification Analyzer on
this new specification keeping in mind the error we
detected. This will ensure that the specification has
indeed been corrected appropriately.

We now apply the Consistency Checking System on
the program with the modified specification. If the pro-
gram did not behave as anticipated earlier, the Con-
sistency Checking System will now detect an anomaly.

The paragraphs below explain what is done in this sit-
uation.

Errors detected in the program. This happens
because of either an error in the program, or in the
environment in which the program is running. In ei-
ther case, the Consistency Checking System reports an
inconsistency. In Section 4, we have already demon-
strated one possible approach to pinpointing and cor-
recting the error. A real-life experience of using the
Consistency Checking System in going one step fur-
ther to locate an Ada compiler bug is described in [16].

The above techniques of corrective maintenance can
equally well be applied to earlier phases in the software
development life-cycle. In software maintenance, their
usefulness is made more significant by the fact that it is
not always the case that the software developer is also
the maintainer of the software. It is also possible that
the software developer has forgotten the vast amounts
of assumptions made in a large software project.

7 Adaptive Maintenance

Adaptive maintenance involves modifying software to
overcome changes in the processing (both hardware
and software) environment of the program. To solve
this problem, the programmer must define precise in-
terfaces to implementation dependent code. This inter-
face should, however, be implementation independent.
The idea being that when a change in the environ-
ment is made, only the implementation of this inter-
face needs to be changed. In addition to building such
a interface, it helps to formally specify this interface,
clearly laying out the assumptions that are being made
of the underlying environment. Examples of such spec-
ifications appear below. Violations with respect to such
specifications indicate a mismatch between what is ex-
pected of the environment and the actual environment
itself.

Ada has been written keeping portability in mind. In
spite of the efforts made by the language design team,
there are a variety of reasons why Ada programs are
not portable:

Errors in the new environment. The program
may not run in the new environment if this new en-
vironment contains errors. This may be due to errors
in the compiler, runtime system, or even a hardware
or operating system error. The usefulness of specifica-
tions in detecting such errors is clearly indicated in [16],
which describes the detection of a compiler bug when a
certain piece of software was ported from a Sun work-
station to a Sequent Symmetry machine.

Size of predefined types. Some commonly avail-
able Ada compilers represent the predefined type
INTEGER using 16 bits, while others use 32 bits. When
a program is ported from a 32 bit machine to the 16 bit
machine it may stop working. A formal specification
that states our assumption regarding the sizes of pre-
defined types can ease the process of detecting such
errors during the porting process. An example of such
a specification is shown below:

 I INTEGER'FIRST < =

-- INTEGER'LAST > =

— 2**16+1,

2**16 —i;

An alternate solution that will work in most situations
is to define new types and not rely on the bounds of
predefined types2. For example, we could replace the
above specification by:

type MY_INTEGER is range —2**16 +1. .2**16 —l;

and all occurrences of INTEGER in the program by
MYJNTEGER.

Erroneous programs. There are many situations in
Ada where certain implementation details are left upto
the compiler. If a program is written in such a way
that it can behave differently depending on the choice
of implementation made by the compiler, this program
is considered erroneous. An example of an erroneous
program is one whose execution depends on the order of
evaluation of the two sides of an assignment statement.
For example, if FIND and INSERT are two operations
in a symbol table package, then the following statement
may be erroneous:

FIND("FOO").SIZE :=
COMPONENT_SIZE_SUM(INSERT("FOO"));

Here, we assume that the right hand side is evaluated
first. Erroneous programs should not be written in
the first place, but mistakes are made especially when
developing very large programs. Specifications about
the intended behavior of the portion of the program
containing the above assignment specification will usu-
ally help in detecting the error when this program is
compiled to evaluate the left-hand side of assignment
statements first.

Foreign language interfaces. When an Ada pro-
gram is linked with programs written in other lan-
guages, we need to ensure that data structures are

2 We are forced to use predefined types in Ada in some sit-
uations. For example, the package TEXT_IO uses the type
STRING whose index type is INTEGER.

passed correctly between code written in the different
languages. Formal specifications that describe how the
foreign language interface should behave ease the de-
tection of any potential problems when, for example,
the Ada program calls C routines, and the C compiler
is replaced by another C compiler with different stor-
age mechanisms.

8 Real-Life Experiences

The use of even extremely trivial annotation constructs
has helped us greatly in the maintenance process. We
have many large pieces of software that have been lying
around for many years, but get periodically upgraded.
Many times, we have been warned of inconsistent up-
grades as a result of violations with respect to very
simple annotation constructs. An example of a com-
monly occurring annotation construct is an assertion
about the value of a pointer variable:

--| PTR /= null;

The above assertion specifies formally an assumption
that the pointer variable PTR references a data struc-
ture at this point. Any upgrade that causes PTR to be
null at this point will immediately cause the reporting
of an inconsistency.

One of the authors has developed an overload reso-
lution package for Ada/Anna expressions. The size of
this package is around 3000 lines, and contains many
annotations specifying assumptions as complex as the
overall functionality of the overload resolution package,
to assumptions as simple as assertions about a particu-
lar program state. Many of these annotations are more
than three years old. These annotations have proved
to be invaluable in the maintenance of the overload res-
olution package especially since violations are reported
automatically and also since the author has forgotten
many of the assumptions he made.

9 Conclusions

The advantages of software maintenance using formal
specifications, as exemplified by our methodology and
tools, over present software maintenance methods and
tools include:

• The program requirements are stated formally.
The set of specifications to be tested at each level
of program structure constitutes a formal defini-
tion of the behavior to be tested at that level. Con-
sequently, the error detection process may involve

10

several people with understandings of different lev-
els and components of the software. A systems
designer may, for example work with high level
specifications, and hand over a precise problem —
"this specification of that component is violated
by this test sequence" — to an expert in a partic-
ular component.

• Faults in the specification can be detected method-
ically.
Currently, there are very few tools that allow us
to analyze specifications symbolically. The Spec-
ification Analyzer permits us to play mind-games
with the specification. The results of these mind
games are facts about the program execution that
can be determined from the specification. Using
this information, it is usually quite easy to detect
faults in specifications.

• Faults in the program are detected automatically.
Current debuggers gather information from the
lowest implementation levels of a program and
its runtime environment. The programmer must
deduce what is happening from this information.
Some more advanced debuggers can test boolean
assertions about program variables. The Consis-
tency Checking System, on the other hand, pro-
vides the power to test very general constraints
on packages, abstract types, data structures, and
subprograms. The task of searching output traces
in order to recognize errors is eliminated.

• Very complex tests can be formulated easily.
For example, specifications against side-effects on
global data are easily formalized and are then
tested automatically. Typical one-line abstract
specifications that are checked by our tools could
require manual insertion of large numbers (possi-
bly hundreds) of breakpoints, print statements, or
assertions, in order to be checked by current kinds
of debuggers.

• Our methods and tools are independent of the lan-
guage implementation.

• Our methods apply to other development processes
in the software life-cycle.
The techniques used in software maintenance can
be applied earlier in software development, for ex-
ample in analyzing simulations and in using proto-
types to develop formal standard specifications for
module interfaces. We have also mentioned earlier
that techniques developed primarily for debugging
can be easily adapted to software maintenance.

10 Acknowledgements

We would like to thank Prof. David Luckham at Stan-
ford for his guidance and support for writing this pa-
per. Walter Mann was the primary developer of the
Specification Analyzer. The debugging methodology
was developed along with Dr. Shuzo Takahashi and
Prof. David Luckham.

This research was supported by the Defense Ad-
vanced Research Projects Agency under contract
N00039-84-C-0211.

References
[1] The Ada Programming Language Reference Manual

US Department of Defense, US Government Printing
Office, February 1983. ANSI/MIL-STD-1815A-1983.

[2] V. R. Basili. Viewing maintenance as reuse-oriented
software development. IEEE Software, January 1990.

[3] R. A. DeMillo, W. M. McCracken, R. J. Martin, and
J. F. Passafiume. Software Testing and Evaluation.
Benjamin/Cummings, 1987.

[4] J. V. Guttag, J. J. Horning, and J. M. Wing. The
Larch family of specification languages. IEEE Soft-
ware, 2(5):24-36, September 1985.

[5] W. C. Hetzel, editor. Program Test Methods. Series
in Automatic Computation, Prentice-Hall, 1973.

[6] D. C. Luckham, S. Sankar, and S. Takahashi. Two
Dimensional Pinpointing: An Application of For-
mal Specification to Debugging Packages. Technical
Report CSL-TR-89-379, Stanford University, April
1989. To appear in IEEE Software.

[7] D. C. Luckham and F. W. von Henke. An overview
of Anna, a specification language for Ada. IEEE Soft-
ware, 2(2):9-23, March 1985.

[8] D. C. Luckham, F. W. von Henke, B. Krieg-Briickner,
and O. Owe. Anna — A Language for Annotating
Ada Programs. Springer-Verlag — Lecture Notes in
Computer Science No. 260, July 1987.

[9] N. Madhav and W. Mann. A methodology for for-
mal specification and implemantation of ada packages.
1990. To appear in COMPSAC 1990, Chicago.

[10] W. R. Mann. Anna package specification analyzer
user's guide. 1990. Unpublished technical report.

[11] M. Nielsen, K. Havelund, K. R. Wagner, and C.
George. The RAISE language, method and tools. In
Proceedings of the VDM Conference, pages 376-405,
Springer-Verlag — Lecture Notes in Computer Science
No. 328, 1988.

[12] W. M. Osborne and E. J. Chikofsky. Fitting pieces
to the maintenance puzzle. IEEE Software, January
1990.

11

[13] G. Parikh. The world of software maintenance. In G.
Parikh and N. Zvegintzov, editors, Tutorial on Soft-
ware Maintenance, IEEE Computer Society, 1983.

[14] M. G. Rekoff Jr. On reverse engineering. IEEE Trans-
actions on Systems, Man, and Cybernetics, March-

April 1985.

[15] S. Sankar. Automatic Runtime Consistency Check-
ing and Debugging of Formally Specified Programs.
PhD thesis, Stanford University, August 1989. Also
Stanford University Department of Computer Science
Technical Report No. STAN-CS-89-1282, and Com-
puter Systems Laboratory Technical Report No. CSL-
TR-89-391.

[16] S. Sankar. A note on the detection of an Ada com-
piler bug while debugging an Anna program. ACM
SIGPLAN, 24(6):23-31, 1989.

[17] S. Sankar and M. Mandal. Concurrent runtime mon-
itoring of formally specified programs. 1990. Submit-
ted for publication in IEEE Computer.

[18] S. Sankar, D. S. Rosenblum, and R. B. Neff. An imple-
mentation of Anna. In Ada in Use: Proceedings of the
Ada International Conference, Paris, pages 285-296,
Cambridge University Press, May 1985.

[19] J. M. Spivey. Understanding Z, A Specification Lan-
guage and its Formal Semantics. Cambridge Unversity
Press, 1988. Tracts in Theorectical Computer Science,
Volume 3.

[20] R. T. Yeh, editor. Current Trends in Program-
ming Methodology, Volume 2 — Program Validation.
Prentice-Hall, Inc., 1977.

12

